
Let us consider abstract EC defined in XOY and expressed by the equation:
 y2 = x3 + ax + b mod p.
EC points are computed by choosing coordinate x and computing coordinate y2.
To compute coordinate y it is needed to extract root square of y2.
 y = ±√y2 mod p.
Notice that from y2 we obtain 2 points in EC, namely y and -y no matter computations are performed
with integers mod p or with real numbers.
Notice also that since EC is symmetric with respect to x-axis, the points y and -y are symmetric in EC.
Since all arithmetic operations are computed mod p then according to the definition of negative points
in Fp points y and -y must satisfy the condition

 y + (-y) = 0 mod p.
Then evidently
 y2 = (-y)2 mod p.
For example:
-2 mod 11 = 9
22 mod 11 = 4 & 92 mod 11 = 4
>> mod(9^2,11)
ans = 4

Key generation

Elliptic Curve Cryptosystem - ECC

x

http://crypto.fmf.ktu.lt/telekonf/archyvas/B127%20DuomenuSauga/B127%20DataSecurity%202024/

027_002 ECC-ECDSA

 027_002 ECC_ECDSA Page 1

http://crypto.fmf.ktu.lt/telekonf/archyvas/B127%20DuomenuSauga/B127%20DataSecurity%202024/

Elliptic Curve Digital Signature Algorithm - ECDSA
ECDA Public Parameters: PP = (EC, G, p), G=(xG, yG); ElGamal CS Public Parameters: PP = (p, g)

1<xG<n, 1<yG<n.
n - is an order (number of points) of EC, i.e. according to secp256k1 standard is equal to p: n=p;
|n|=|p|=256 bits.
PrKA=z <-- randi; z< n, max|z|<=256 bits.
PuKA=z*G=A=(xA, yA); max|A|=2•256=512 bits.

Signature creation for message M
Signature is formed on the h-value h of Hash function of M.
Recommended to use SHA256 algorithm

h = H(M)=SHA256(M);1.

Key generation
1.Install Python 3.9.1.
2.Launch script Packages for joining a libraries.
3.Launch file ECC.
4.If window is escaping, then open hiden windows
 in icon near the Start icon.

x

 027_002 ECC_ECDSA Page 2

h = H(M)=SHA256(M);1.

i <-- randi; |i|≤ 256 bits; >> gcd(i,p)=1 --> 2.
R = i*G = i*(xG, yG) = (xR, yR);3.
r = xR mod p; 4.

s = (h + z • r) • i-1 mod p; |s|≤ 256 bits; // Since i p satisfies the condition that gcd(i,p)=1, then exists i-1 mod p.5.
 // >> i_m1=mulinv(i,p) % in Octave

Sign(PrKECC=z, PP, h) = ϭ = (r, s) 6.

Calculate u1 = h • s-1 mod p and u2 = r • s-1 mod p 1.

Calculate the curve point V = u1*G + u2*A=V(xV, yV) 2.

The signature is valid if R=V; r=xV=xR mod p.3.

Signature vrification: Ver(PuK, ϭ, h)

ECDSA ElGamal Signature

h = H(m); h = H(m);

i randi;
Compute i-1 mod p

i randi; gcd(i, p-1)=1
Compute i-1 mod (p-1)

R = i*G = i*(xG, yG) = (xR, yR);

r = xR mod p; |i|≤ 256 bits;

r=gi mod p;

s=(h+z•r)i-1 mod p; |s|≤ 256 bits; s=(h-x•r)i-1 mod (p-1);

s-1=(h+z•r)-1i mod p; h=xr+is mod (p-1).

Sign(PrKECC=z, h) = (r, s) = ϭ; Sign(PrK=x, h) = (r, s) = ϭ;

ECDSA Verification ElGamal Signature Verification

Compute u1=h•s-1 mod p and

 u2=r•s-1 mod p;

Compute: u1= gh mod p;
and u2= arrs mod p

Compute R = u1*G + u2*A = (xR, yR); Signature is valid if: u1= u2

The signature is valid if r=xR mod p.

Correctness:
R=u1*G + u2*A
From the definition of the Public Key A=z*G we have:
R=u1*G + (u2•z)*G
Because EC scalar multiplication distributes over addition we have:
R=(u1 + u2•z)*G
Expanding the definition of u1 and u2 from verification steps we have:
R=(h•s-1 + r•s-1•z)*G
Collecting the common term s-1 we have:
R=[(h + r•z)•s-1]*G

ϭ

Schnorr Signature

h = H(m);

i randi;

r=gi mod p;

s=(i+x•h) mod (p-1);

Sign(PrK=x, h) = (r, s) = ϭ;

Schnorr Signature Verification

Compute: u1= gs mod p.
and u2= rah mod p

Signature is valid if: u1= u2

Let u, v are integers < p.

Property 1: (u + v)P = uP ⊞ vP replacement to --> (u + v)P = uP + vP

Property 2: (u)(P ⊞ Q) = uP ⊞ uQ replacement to --> u(P + Q) = uP + uQ

Important identity used e.g. in Ring Signature:

(t-zc)G+cA = tG-zcG+cA = tG-c(zG)+cA = tG-cA+cA = tG mod p.

! such that i-1 exists.

 027_002 ECC_ECDSA Page 3

Public-key cryptography is based on the intractability of certain mathematical problems.
Early public-key systems are secure assuming that it is difficult to factor a large integer
composed of two or more large prime factors.
For elliptic-curve-based protocols, it is assumed that finding the discrete logarithm of a
random elliptic curve element with respect to a publicly known base point (generator) is
infeasible: this is the "elliptic curve discrete logarithm problem" (ECDLP).
The security of elliptic curve cryptography depends on the ability to compute a point
multiplication and the inability to compute the multiplicand given the original and
product points.
The size of the elliptic curve determines the difficulty of the problem.
The primary benefit promised by elliptic curve cryptography is a smaller key size,
reducing storage and transmission requirements, i.e. that an elliptic curve group could
provide the same level of security afforded by an RSA-based system with a large
modulus and correspondingly larger key: for example, a 256-bit elliptic curve public key
should provide comparable security to a 3072-bit RSA public key.
The U.S. National Institute of Standards and Technology (NIST) has endorsed elliptic
curve cryptography in its Suite B set of recommended algorithms, specifically elliptic
curve Diffie–Hellman (ECDH) for key exchange and Elliptic Curve Digital Signature
Algorithm (ECDSA) for digital signature.

R=[(h + r•z)•s-1]*G
Expanding the definition of s from signature creation we have:
R=[(h + r•z)•(h + r•z)-1•i]*G=i*G.

Since the inverse of an inverse is the original element, and the product of an element's
inverse and the element is the identity, we are left with R = i*G = (xR, yR); r=xR.

Ethereum for signing transactions is using secp256k1 EC together with keccak256 H-function.
secp256k1 has co-factor=1. When the cofactor is 1, everything is fine.
The signature of transaction in Ethereum is placed in the varaibles v, r, s.

Variable v represents the version of signature and (r, s)=ϭ.

Doubling points in EC

A=11*G
11= 10112 = 1·23 + 0·22 + 1·21 + 1·20 = 8 + 2 +1 = 11.
11= 10112 = 2·2·2 + 0·2·2 + 1·2 + 1 = 2·2·2 + 2 + 1 // *G

A= 2*(2*(2*G)) ⊞ 0*G ⊞ 2*G ⊞ 1*G
A= (8*G) ⊞ 2*G ⊞ G.

 PrK ECC=z < n < 2256; PuK ECC=A=(ax, ay);

|PrK ECC=z|=256 bits; |PuK ECC=A|=512 bits.

Ethereum signatures uses ECDSA and secp256k1 constants to define the elliptic
curve.
From <https://www.bing.com/search?q=ethereum+signature&PC=U316&FORM=CHROMN>

 027_002 ECC_ECDSA Page 4

https://en.wikipedia.org/wiki/Intractability_(complexity)#Intractability
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Level_of_security
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://www.codementor.io/@yosriady/signing-and-verifying-ethereum-signatures-vhe8ro3h6
https://www.codementor.io/@yosriady/signing-and-verifying-ethereum-signatures-vhe8ro3h6
https://www.bing.com/search?q=ethereum+signature&PC=U316&FORM=CHROMN

Algorithm (ECDSA) for digital signature.
The U.S. National Security Agency (NSA) allows their use for protecting information
classified up to top secret with 384-bit keys.[2]

However, in August 2015, the NSA announced that it plans to replace Suite B with a new
cipher suite due to concerns about quantum computing attacks on ECC.[3]

https://en.wikipedia.org/wiki/SHA-2

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by
the United States National Security Agency(NSA).[3] Cryptographic hash functions are
mathematical operations run on digital data; by comparing the computed "hash" (the
output from execution of the algorithm) to a known and expected hash value, a
person can determine the data's integrity.

SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family
consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512
bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.

 027_002 ECC_ECDSA Page 5

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Classified_information_in_the_United_States
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-2
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-nsaquantum-3
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest

