027_002 ECC-ECDSA

http://crypto.fmf.ktu.lt/telekonf/archyvas/B127%20DuomenuSauga/B127%20DataSecurity%202024/

Elliptic Curve Cryptosystem - ECC

Let us consider abstract EC defined in XOY and expressed by the equation:
y2=x3+ax + b mod p.
EC points are computed by choosing coordinate x and computing coordinate y2.
To compute coordinate y it is needed to extract root square of y2.
y = +Vy?mod p.
Notice that from y? we obtain 2 points in EC, namely y and -y no matter computations are performed
with integers mod p or with real numbers.
Notice also that since EC is symmetric with respect to x-axis, the points y and -y are symmetric in EC.
Since all arithmetic operations are computed mod p then according to the definition of negative points
in Fp points y and -y must satisfy the condition Fer = {0, 42, -5 pA fi
y+(-y) =0 mod p. % prod p
Then evidently
y>=(-y)>’mod p.
For example:

2 mod 11 = 9 2+(-2) modt =2+ 9 med 11 = 21 wpd 11 =0

22mod11=4 & 92mod 11=4

>>mod(972,11)

ans=4
Because this curve is defined over a finite field of prime order instead of over the real numbers, it looks like & pattern of dots
scatterad in twe dimensions, which makes it difficult to visualize. Howewer, the math is identical to that of an elliptic curve
aver real numibsers. As an example, Elliptic curve cryptography: visualizing an elliptic curve over Fip), with p=17 shows the

same elliptic curve over a much smaller finite field of prime order 17, showing a pattern of dots on a grid. The secp256k1
bitcoin elliptic curve can be thought of as a much more complex pattem of dots on a unfathomably large grid

18 L

18 Gn

&

(= |

1 2 4 5 [} T a w1 12 13 14 18 1 17

]
Figure 3. Elliptic curve cryptography: visualizing an elliptic curve owver F{p), with p=17

r, s Ethereum %‘gwa%fw

027_002 ECC_ECDSA Page 1

http://crypto.fmf.ktu.lt/telekonf/archyvas/B127%20DuomenuSauga/B127%20DataSecurity%202024/

Key generation

1.Install Python 3.9.1.

2.Launch script Packages for joining a libraries.

3.Launch file ECC.

4.1f window is escaping, then open hiden windows
in icon near the Start icon.

[# Packages 2021.12.05 18:23 Python File 1 KB

[# Ecc 2021.12.09 19:06 Python File KB

Documents » 500 SOFTAS 2023 » Python 3.9.1 » 111.ECDSA 2023.09 ¥ C:\Users\Eligijus\AppData\Local\Programs\Python\Python311\python.exe

CCDS python app
Please input required command:
Archyvas 1 f 1 Generate new ECC private and public keys

| 111.ECDSAZIp p Export private and public keys
App_PrE.txt Export private key
App_Puk. tet Export public key
App_Signature. et toag Sr“iva:flkey
[EcCpy oa ata file
Instrukcija.txt Sign loaded file

Load public key

Verify signature

Export signature

Load signature

Draw secp256kl graph in real numbers

Draw secp256kl graph over finite field
exit/e - Exit app

[Input command:

P Packages.py

3
4
5
6
7
8
9
1
1
1
1

o “ o
120 |
' ao
® o o o0° . ®
100 N s |®
B [} ®] ° o
[® e o %,
1 |® e o o L
80 . = [X] e ® [Y .. ®e Py
6o 8 — * >
¢ o0 ' o o0 o 0@ @ X
o8
° o °
40 4 o . ® - e ®
® o LI L % o ©
o o ® o .
20 1 e O -. o ° °]
' ao
04 L 1 @
0 20 40 60 80 100 120
AEd» Q= x=54.7 y=112.4

Elliptic Curve Digital Signature Algorithm - ECDSA
ECDA Public Parameters: PP = (EC, G, p), G=(xg, Vs); ElIGamal CS Public Parameters: PP = (p, g)
1<xs<n, 1<ys<n.
n - is an order (number of points) of EC, i.e. according to secp256k1 standard is equal to p: n=p;
n|=|p|=256 bits.
PrKa=z <-- randi; z< n, max|z|<=256 bits.
PuKa=z*G=A=(x4, ya); max|A|=2¢256=512 bits.

Signature creation for message M
Signature is formed on the h-value h of Hash function of M.
Recommended to use SHA256 algorithm

027_002 ECC_ECDSA Page 2

1. h = H(M)=SHA256(M);

2. 1 <--randi; |i|< 256 bits; >> gcd(i,p)=1--> = I such that i"! exists.

3. R= i¥G = if(xc, yo) = (Xr, YR);

4. r =xgr mod p;

5.s=(h+ze+r)«iltmod p; |s|< 256 bits; // Since i p satisfies the condition that gcd(i,p)=1, then exists i-* mod p.

/[>>1_ml=mulinv(i,p) % in Octave 6
6. Sign(Prkecc=z, PP, h) =6 = (r,)

Signature vrification: Ver(PuK, 6, h)

1. Calculate us =hestmodpanduz=restmodp

2. Calculate the curve point V = u:8G + uBA=V(xv, yv)
3. The signature is valid if R=V; r=xv=xgr mod p.

ECDSA ElGamal Signature Schnorr Signature
h = H(m); h = H(m); h = H(m);
I <randi; I <randi; ged(i, p-1)=1 i €randi:
Compute it mod p Compute it mod (p-1)
R =1*G = i*(xc, Yc) = (Xr, YRr); r=g'mod p; r=g' mod p;
r=xgr mod p; |i|< 256 bits;
s=(h+zer)i"t mod p; [s|< 256 bits; s=(h-xer)it mod (p-1); s=(i+x=h) mod (p-1);
s1=(h+zer)i mod p; h=xr+is mod (p-1).
Sign(PrKecc=z, h) = (r, s) = 6; Sign(PrK=x, h) = (r, s) = 6; Sign(PrK=x, h) = (r, s) = 6;

ECDSA Verification ElGamal Signature Verification Schnorr Signature Verification
Compute ui=hest mod p and Compute: ui=g"mod p; Compute: ui=g®mod p.
uz=rest mod p; and uz= a'rsmod p and uz=ra" mod p

Compute R = u§G + ulA = (x, yr); Signature is valid if: u1= uy Signature is valid if: ui= uz

The signature is valid if r=xg mod p.

Let u, v are integers < p.
Property 1: (u + v)*P = uxP /@B v*P replacementto--> (u+ V)P =uP + VP
Property 2: (u)*(P B Q) = u*P B u*Q replacementto--> u(P + Q) =uP +uQ

Important identity used e.g. in Ring Signature:
(t-zC)*G+c*xA = t+G-zcxG+e*A = t+G-c(z2+G)+c*A = t+G-cxA+cxA = tG mod p.

|
| % (a+x ' -z = Ux

Correctness:

R=u1*G + u*A

From the definition of the Public Key A=z*G we have:

R=u1*G + (uy*2)*G

Because EC scalar multiplication distributes over addition we have:
R=(u; + uy*2)*G

Expanding the definition of u; and u, from verification steps we have:
R=(hes + reslez)*G

Collecting the common term s we have:

027_002 ECC_ECDSA Page 3

R=[(h + rez)es1]*G

Expanding the definition of s from signature creation we have:

R=[(h + rez)e(h + rez)lei|*G=i*G.

Since the inverse of an inverse is the original element, and the product of an element's
inverse and the element is the identity, we are left with R =i*G = (xg, ygr); r=xg.

PrK ecc=z < n < 2%%%; PuK gcc=A=(ay, ay); 2? 54 uv

12
|PrK gcc=z|=256 bits; |PuK gcc=A|=512 bits. - jT ~AY

Doubling points in EC

A=11*G
11=1011,=123 +0:22 +1-:22 +1-20=8+2 +1 = 11.
11=1011,=2-2:2 +~O-2-2 +12 +1=222+2 +1 /1 *G

el

(2(2*G)) |\ 0*G m2*G | 1*G
= (8*G) m2*Gm G.

Ethereum signatures uses ECDSA and secp256kl constants to define the elliptic
curve.
From <https://www.bing.com/search?qg=ethereum+signature&PC=U316&FORM=CHROMN >

Ethereum for signing transactions is using secp256k1 EC together with keccak256 H-function.
secp256k1 has co-factor=1. When the cofactor is 1, everything is fine.

The signature of transaction in Ethereum is placed in the varaibles v, r, s.

Variable v represents the version of signature and (r, s)=6.

Public-key cryptography is based on the intractability of certain mathematical problems.

Early public-key systems are secure assuming that it is difficult to factor a large integer

composed of two or more large prime factors.

For elliptic-curve-based protocols, it is assumed that finding the discrete logarithm of a 18M

_rando_m eIIipt'ic.curve”eIgm(f:nt with r.espect toa pyblicly known”base point (generator) is %722?, 5%&0*”
infeasible: this is the "elliptic curve discrete logarithm problem" (ECDLP).

The security of elliptic curve cryptography depends on the ability to compute a point 4332 ¢/>1(1L$
multiplication and the inability to compute the multiplicand given the original and

product points. W‘WWMV”

The size of the elliptic curve determines the difficulty of the problem. gmfﬂ%éméﬁf
The primary benefit promised by elliptic curve cryptography is a smaller key size,

reducing storage and transmission requirements, i.e. that an elliptic curve group could 1ke = {02Y

provide the same level of security afforded by an RSA-based system with a large
modulus and correspondingly larger key: for example, a 256-bit elliptic curve public key
should provide comparable security to a 3072-bit RSA public key. 2
The U.S. National Institute of Standards and Technology (NIST) has endorsed elliptic

curve cryptography in its Suite B set of recommended algorithms, specifically elliptic

curve Diffie—Hellman (ECDH) for key exchange and Elliptic Curve Digital Signature

w2y =
Ap2U1

027_002 ECC_ECDSA Page 4

https://en.wikipedia.org/wiki/Intractability_(complexity)#Intractability
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Level_of_security
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://www.codementor.io/@yosriady/signing-and-verifying-ethereum-signatures-vhe8ro3h6
https://www.codementor.io/@yosriady/signing-and-verifying-ethereum-signatures-vhe8ro3h6
https://www.bing.com/search?q=ethereum+signature&PC=U316&FORM=CHROMN

Algorithm (ECDSA) for digital signature.

The U.S. National Security Agency (NSA) allows their use for protecting information
classified up to top secret with 384-bit keys.[2l

However, in August 2015, the NSA announced that it plans to replace Suite B with a new
cipher suite due to concerns about quantum computing attacks on ECC.E!

https://en.wikipedia.org/wiki/SHA-2

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by
the United States National Security Agency(NSA).E! Cryptographic hash functions are
mathematical operations run on digital data; by comparing the computed "hash" (the
output from execution of the algorithm) to a known and expected hash value, a

person can determine the data's integrity. SHA=T140

. - . . Vor_ &0
SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family 2 =2
consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 & 70
bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. Z

\ .
buthda 256
2422 pﬂmaﬂﬁ% 27 = \[gor2

2%2 Sectre &ZMM;ZL Brute)/ﬁf‘éé altey k

027_002 ECC_ECDSA Page 5

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Classified_information_in_the_United_States
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-2
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-nsaquantum-3
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest

