http://crypto.fmf.ktu.lt/telekonf/archyvas/B127%20DuomenuSauga/B127%20DataSecurity%202024/

Elliptic Curve Cryptosystem - ECC

Let us consider abstract EC defined in XOY and expressed by the equation:

$y^2 = x^3 + ax + b \mod p$.

EC points are computed by choosing coordinate x and computing coordinate y^2 .

To compute coordinate y it is needed to extract root square of y^2 .

 $y = \pm \sqrt{y^2 \mod p}$.

Notice that from y^2 we obtain 2 points in EC, namely y and -y no matter computations are performed with integers **mod** *p* or with real numbers.

Notice also that since EC is symmetric with respect to *x*-axis, the points *y* and -*y* are symmetric in EC. Since all arithmetic operations are computed **mod** *p* then according to the definition of negative points $F_p = \{0, 1, 2, \dots, p-1\}$ in F_p points y and -y must satisfy the condition

$$\mathbf{y} + (-\mathbf{y}) = 0 \mod \mathbf{p}.$$

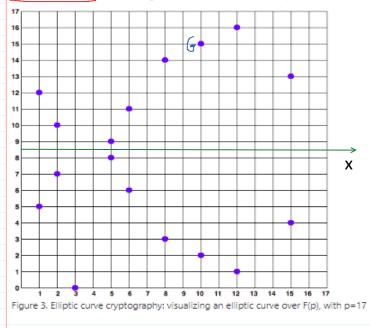
Then evidently

 $y^2 = (-y)^2 \mod p$.

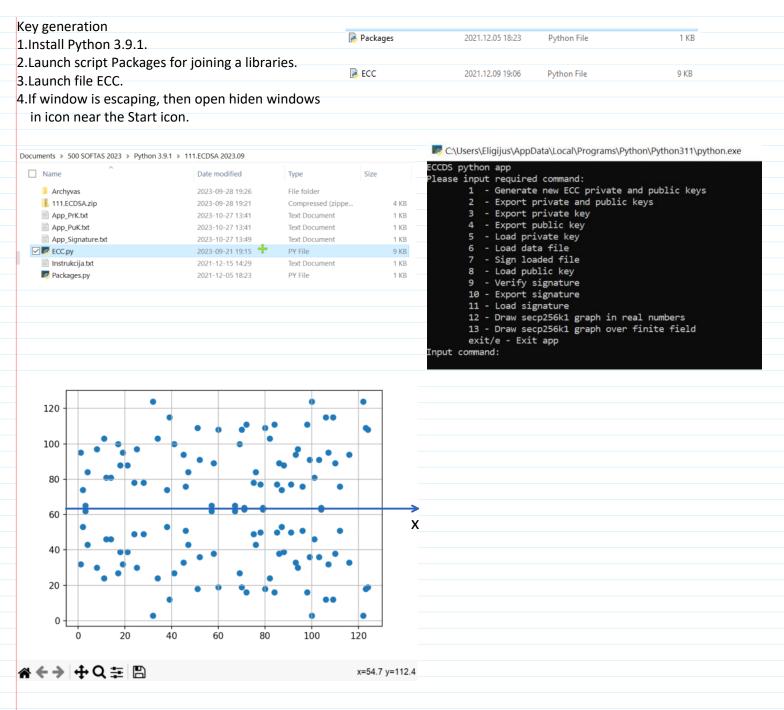
For example:

-2 mod 11 = 9

 $2 + (-2) \mod 11 = 2 + 9 \mod 11 = 11 \mod 11 = 0$


* modp

 $2^2 \mod 11 = 4 \& 9^2 \mod 11 = 4$


>> mod(9^2,11)

ans = 4

Because this curve is defined over a finite field of prime order instead of over the real numbers, it looks like a pattern of dots scattered in two dimensions, which makes it difficult to visualize. However, the math is identical to that of an elliptic curve over real numbers. As an example, Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17 shows the same elliptic curve over a much smaller finite field of prime order 17, showing a pattern of dots on a grid. The secp256k1 bitcoin elliptic curve can be thought of as a much more complex pattern of dots on a unfathomably large grid.

v, r, s, Ethereum signature

Elliptic Curve Digital Signature Algorithm - ECDSA

ECDA Public Parameters: **PP** = (*EC*, *G*, *p*), *G*=(x_G , y_G); ElGamal CS Public Parameters: **PP** = (*p*, *g*) $1 < x_G < n$, $1 < y_G < n$.

n - is an order (number of points) of EC, i.e. according to secp256k1 standard is equal to p: n=p;
n|=|p|=256 bits.

 $PrK_A = z < -- randi; z < n, max |z| <= 256 bits.$

 $PuK_A = z^*G = A = (x_A, y_A); max |A| = 2 \cdot 256 = 512 bits.$

Signature creation for message M

Signature is formed on the h-value **h** of Hash function of **M**. Recommended to use SHA256 algorithm 1. h = H(M) = SHA256(M);2. $i < --randi; |i| \le 256 \text{ bits}; >> gcd(i,p) = 1 --> \exists ! \text{ such that } i^{-1} \text{ exists.}$ 3. $R = i^*G = i^*(x_G, y_G) = (x_R, y_R);$ 4. $r = x_R \mod p;$ 5. $s = (h + z \bullet r) \bullet i^{-1} \mod p; |s| \le 256 \text{ bits}; // \text{ Since } i p \text{ satisfies the condition that } gcd(i,p) = 1, \text{ then exists } i^{-1} \mod p.$ $// >> i_m 1 = \text{mulinv}(i,p) \qquad \% \text{ in Octave } \mathbf{6}$ 6. $Sign(PrK_{ECC}=z, PP, h) = \mathbf{6} = (r, s)$

Signature vrification: Ver(PuK, 6, *h*)

1. Calculate $u_1 = h \cdot s^{-1} \mod p$ and $u_2 = r \cdot s^{-1} \mod p$

- 2. Calculate the curve point $V = u_1 * G + u_2 * A = V(x_V, y_V)$
- 3. The signature is valid if R=V; $r=x_V=x_R \mod p$.

ECDSA	ElGamal Signature	Schnorr Signature
$\boldsymbol{h}=\mathrm{H}(\boldsymbol{m});$	$\boldsymbol{h}=\mathrm{H}(\boldsymbol{m});$	h = H(m);
<i>i</i> ←randi; Compute <i>i</i> ⁻¹ mod <i>p</i>	$i \leftarrow \text{randi; gcd}(i, p-1)=1$ Compute $i^{-1} \mod (p-1)$	<i>i</i> ←randi;
$R = i^*G = i^*(x_G, y_G) = (x_R, y_R);$ $r = x_R \mod p; \ i \le 256 \text{ bits};$	$r=g^i \mod p;$	$r=g^i \mod p;$
$s = (h + \mathbf{z} \cdot \mathbf{r})i^{-1} \mod p; s \le 256 \text{ bits};$	$s = (h - \mathbf{x} \cdot \mathbf{p})i^{-1} \mod (\mathbf{p} - 1);$	$s = (i + \mathbf{x} \cdot h) \mod (p-1);$
$s^{-1} = (h + \mathbf{z}^{\bullet} r)^{-1} i \mod p;$	h = x <i>r</i> + <i>is</i> mod (<i>p</i> -1).	
$\operatorname{Sign}(\operatorname{\mathbf{PrK}_{ECC}=\mathbf{z}}, h) = (r, s) = 6;$	$\mathbf{Sign}(\mathbf{PrK}=\mathbf{x}, h) = (r, s) = 6;$	$\mathbf{Sign}(\mathbf{PrK}=\mathbf{x}, h) = (r, s) = 6;$
ECDSA Verification	ElGamal Signature Verification	Schnorr Signature Verification
Compute $u_1 = h_{\bullet}s^{-1} \mod p$ and	Compute: $u_1 = g^h \mod p$;	Compute: $u_1 = g^s \mod p$.
$u_2=r^{\bullet}s^{-1} \mod p;$	and $u_2 = a^r r^s \mod p$	and $u_2 = ra^h \mod p$
Compute $\boldsymbol{R} = \boldsymbol{u}_1 \overset{*}{\overset{*}\boldsymbol{G}} + \boldsymbol{u}_2 \overset{*}{\overset{*}\boldsymbol{A}} = (\boldsymbol{x}_R, \boldsymbol{y}_R);$	Signature is valid if: $u_1 = u_2$	Signature is valid if: $u_1 = u_2$
The signature is valid if $r = x_R \mod p$.		

Let u, v are integers < p.

ł	$Property 1: (u + v) * P = u * P \boxplus v * P$	replacement to>	(u+v)P = uP + vP
ł	Property 2: $(u)*(P \boxplus Q) = u*P \boxplus u*Q$	replacement to>	u(P+Q) = uP + uQ

Important identity used e.g. in Ring Signature: (t-zc)*G+c*A = t*G-zc*G+c*A = t*G-c(z*G)+c*A = t*G-c*A+c*A = tG mod p.

$$+\chi - a = 0\chi$$

Correctness: $\mathbf{R}=u_1^*\mathbf{G}+u_2^*\mathbf{A}$ From the definition of the Public Key $\mathbf{A}=\mathbf{z}^*\mathbf{G}$ we have: $\mathbf{R}=u_1^*\mathbf{G}+(u_2\cdot\mathbf{z})^*\mathbf{G}$ Because EC scalar multiplication distributes over addition we have: $\mathbf{R}=(u_1+u_2\cdot\mathbf{z})^*\mathbf{G}$ Expanding the definition of u_1 and u_2 from verification steps we have: $\mathbf{R}=(\mathbf{h}\cdot\mathbf{s}^{-1}+\mathbf{r}\cdot\mathbf{s}^{-1}\cdot\mathbf{z})^*\mathbf{G}$ Collecting the common term \mathbf{s}^{-1} we have:

(K - (I) + I = 2) = (I) + I = 2	z) ⁻¹ • <i>i</i>]*G= <i>i</i> *G.		
-	f an inverse is the original element, and the produ	uct of an element's	
	ment is the identity, we are left with $R = i^*G = (x_i)^{-1}$		
P	PrK ECC= Z < n < 2 ²⁵⁶ ; PuK ECC= A =(a_x, a_y);	256	$2^{40} - 17 \sim 10^{10}$
P	rK ECC = Z = 256 bits; PuK ECC = A = 512 bits.	L	$2 - 1/ \sim 10^{-10}$
	Doubling points in EC		
A=11*G			
_	$+ 0.2^{2} + 1.2^{1} + 1.2^{0} = 8 + 2 + 1 = 11.$	11 * C	
$11 = 1011_2 = 2.7.7$	+0.522+1.2+1=2.522+2+1	// * G	
	$(2^*G)) \boxplus 0^*G \boxplus 2^*G \boxplus 1^*G$		
A = (8*G)	$\boxplus 2^*G \boxplus G.$		
Ethoroum oignotu	ires uses ECDSA and econ2E6k1 constants t	a define the elliptic	
curve.	res uses ECDSA and secp256k1 constants t		
	v.bing.com/search?g=ethereum+signature&PC=L	J316&FORM=CHROM	1N>
	v.bing.com/search?q=ethereum+signature&PC=L	J316&FORM=CHROM	<u>1N</u> >
From < <u>https://wwv</u>			
From < <u>https://wwv</u> Ethereum for signir	w.bing.com/search?q=ethereum+signature&PC=L ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin	ith keccak256 H-func	
From < <u>https://wwv</u> Ethereum for signir secp256k1 has co-f	ng transactions is using secp256k1 EC together w	ith keccak256 H-func e.	
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra	ng transactions is using secp256k1 EC together w actor=1. When the cofactor is 1, everything is fin	ith keccak256 H-func e.	
From < <u>https://www</u> Ethereum for signir secp256k1 has co-f The signature of tra Variable v represen	ng transactions is using secp256k1 EC together w actor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v ats the version of signature and (r , s)= 6 .	ith keccak256 H-func e. , r , s.	
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v its the version of signature and (r , s)= 6 .	ith keccak256 H-func e. 7, r, s . hematical <u>problems</u> .	
From < <u>https://www</u> Ethereum for signir secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys	ng transactions is using secp256k1 EC together w actor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v ats the version of signature and (r , s)= 6 .	ith keccak256 H-func e. 7, r, s . hematical <u>problems</u> .	
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v ats the version of signature and $(\mathbf{r}, \mathbf{s})=6$. Traphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u>	ith keccak256 H-func e. 7, r, s . hematical <u>problems</u> . <u>ctor</u> a large integer	tion.
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v its the version of signature and (r , s)= 6 . Taphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors.	ith keccak256 H-func e. , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer	tion.
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curv infeasible: this is th	Ing transactions is using secp256k1 EC together we factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles we not the version of signature and $(\mathbf{r}, \mathbf{s})=6$. Fraphy is based on the <u>intractability</u> of certain mates the secure assuming that it is difficult to factor more large prime factors. Frased protocols, it is assumed that finding the discover element with respect to a publicly known base is "eterm".	ith keccak256 H-func e. 7 , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a e point (generator) is DLP).	tion.
From < <u>https://www</u> Ethereum for signir secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curve infeasible: this is th The security of ellip	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v its the version of signature and $(\mathbf{r}, \mathbf{s})=6$. Traphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. ased protocols, it is assumed that finding the <u>disc</u> ve element with respect to a publicly known base is "elliptic curve discrete logarithm problem" (ECI	ith keccak256 H-func e. r, r, s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a e point (generator) is DLP). compute a <u>point</u>	tion.
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curv infeasible: this is th The security of ellip multiplication and t	Ing transactions is using secp256k1 EC together we factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles we not the version of signature and $(\mathbf{r}, \mathbf{s})=6$. Fraphy is based on the <u>intractability</u> of certain mates the secure assuming that it is difficult to factor more large prime factors. Frased protocols, it is assumed that finding the discover element with respect to a publicly known base is "eterm".	ith keccak256 H-func e. r, r, s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a e point (generator) is DLP). compute a <u>point</u>	tion.
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curve infeasible: this is th The security of ellip <u>multiplication</u> and to product points.	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v its the version of signature and (r , s)= 6 . Taphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. ased protocols, it is assumed that finding the <u>disc</u> we element with respect to a publicly known base be "elliptic curve discrete logarithm problem" (ECI otic curve cryptography depends on the ability to the inability to compute the multiplicand given th	ith keccak256 H-functe. a , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a <u>e point (generator) is</u> DLP). compute a <u>point</u> ne original and	tion.
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curv infeasible: this is th The security of ellip <u>multiplication</u> and t product points. The size of the ellip	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles w ints the version of signature and $(\mathbf{r}, \mathbf{s})=6$. Fraphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. ased protocols, it is assumed that finding the <u>disc</u> we element with respect to a publicly known base the "elliptic curve discrete logarithm problem" (ECI otic curve cryptography depends on the ability to the inability to compute the multiplicand given th	ith keccak256 H-func e. r , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a e point (generator) is DLP). compute a <u>point</u> ne original and	tion.
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curv infeasible: this is th The security of ellip multiplication and to product points. The size of the ellip The primary benefit	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v ats the version of signature and (r , s)= 6 . Taphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. ased protocols, it is assumed that finding the <u>disc</u> ve element with respect to a publicly known base the "elliptic curve discrete logarithm problem" (ECI otic curve cryptography depends on the ability to the inability to compute the multiplicand given the stic curve determines the difficulty of the problem t promised by elliptic curve cryptography is a small	ith keccak256 H-functe. a , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a <u>e point (generator) is</u> DLP). compute a <u>point</u> ne original and n. aller <u>key size</u> ,	IBM Peter Shorr 433 gbits quantum entalgement
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curve infeasible: this is th The security of ellip multiplication and to product points. The size of the ellip The primary benefit reducing storage ar	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v ints the version of signature and $(\mathbf{r}, \mathbf{s})=6$. Fraphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. ased protocols, it is assumed that finding the <u>disc</u> we element with respect to a publicly known base the "elliptic curve discrete logarithm problem" (ECI otic curve cryptography depends on the ability to the inability to compute the multiplicand given the stic curve determines the difficulty of the problem t promised by elliptic curve cryptography is a small and transmission requirements, i.e. that an elliptic	ith keccak256 H-functe. a , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a <u>e point (generator) is</u> DLP). <u>compute a point</u> <u>ne original and</u> n . aller <u>key size</u> , <u>curve group could</u>	IBM Peter Shoor 433 qbits quantum entalgement 1KB = 1024
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curv infeasible: this is th The security of ellip multiplication and to product points. The size of the ellip The primary benefic reducing storage ar provide the same le	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v ints the version of signature and (r , s)= 6 . Traphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. The assed protocols, it is assumed that finding the <u>disc</u> we element with respect to a publicly known base the "elliptic curve discrete logarithm problem" (ECI otic curve cryptography depends on the ability to the inability to compute the multiplicand given the attic curve determines the difficulty of the problem t promised by elliptic curve cryptography is a small and transmission requirements, i.e. that an elliptic evel of security afforded by an <u>RSA</u> -based system	ith keccak256 H-functe. a , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a <u>e point (generator) is</u> DLP). <u>compute a point</u> <u>ne original and</u> n . aller <u>key size</u> , <u>curve group could</u> with a large	IBM Peter Shoor 433 qbits quantum entalgement 1KB = 1024
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curve infeasible: this is th The security of ellip multiplication and t product points. The size of the ellip The primary benefit reducing storage ar provide the same <u>le</u> modulus and corres	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles w its the version of signature and (r , s)= 6 . Taphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. ased protocols, it is assumed that finding the <u>disc</u> we element with respect to a publicly known base the "elliptic curve discrete logarithm problem" (ECI otic curve cryptography depends on the ability to the inability to compute the multiplicand given the stic curve determines the difficulty of the problem t promised by elliptic curve cryptography is a small and transmission requirements, i.e. that an elliptic evel of security afforded by an <u>RSA</u> -based system spondingly larger key: for example, a 256 -bit ellip	ith keccak256 H-functe. a , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a <u>e point (generator) is</u> DLP). <u>compute a point</u> <u>ne original and</u> n . aller <u>key size</u> , <u>curve group could</u> with a large	IBM Peter Shoor 433 qbits quantum entalgement 1KB = 1024
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curv infeasible: this is th The security of ellip multiplication and to product points. The size of the ellip The primary benefit reducing storage ar provide the same le modulus and corres should provide com	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles v ints the version of signature and (r , s)= 6 . Fraphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. ased protocols, it is assumed that finding the <u>disc</u> we element with respect to a publicly known base the "elliptic curve discrete logarithm problem" (ECI otic curve cryptography depends on the ability to the inability to compute the multiplicand given th the inability to compute the multiplicand size the transmission requirements, i.e. that an elliptic evel of security afforded by an <u>RSA</u> -based system spondingly larger key: for example, a <u>256</u> -bit ellip inparable security to a <u>3072</u> -bit RSA public key.	ith keccak256 H-functe. a , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a <u>e point (generator) is</u> DLP). <u>compute a <u>point</u> <u>ne original and</u> n. <u>aller key size</u>, <u>curve group could</u> with a large <u>otic curve public key</u></u>	IBM Peter Shorr 433 gbits quantum entalgement
From < <u>https://www</u> Ethereum for signin secp256k1 has co-f The signature of tra Variable v represen Public-key cryptogr Early public-key sys composed of two o For elliptic-curve-ba random elliptic curve infeasible: this is th The security of ellip <u>multiplication</u> and t product points. The size of the ellip The primary benefit reducing storage ar provide the same le modulus and correst should provide com The U.S. <u>National In</u>	ng transactions is using secp256k1 EC together w factor=1. When the cofactor is 1, everything is fin ansaction in Ethereum is placed in the varaibles w its the version of signature and (r , s)= 6 . Taphy is based on the <u>intractability</u> of certain mat stems are secure assuming that it is difficult to <u>fac</u> or more large prime factors. ased protocols, it is assumed that finding the <u>disc</u> we element with respect to a publicly known base the "elliptic curve discrete logarithm problem" (ECI otic curve cryptography depends on the ability to the inability to compute the multiplicand given the stic curve determines the difficulty of the problem t promised by elliptic curve cryptography is a small and transmission requirements, i.e. that an elliptic evel of security afforded by an <u>RSA</u> -based system spondingly larger key: for example, a 256 -bit ellip	ith keccak256 H-functe. a , r , s . hematical <u>problems</u> . <u>ctor</u> a large integer <u>crete logarithm</u> of a <u>e point (generator) is</u> DLP). <u>compute a point</u> <u>ne original and</u> n . aller <u>key size</u> , <u>curve group could</u> with a large <u>otic curve public key</u> endorsed elliptic	IBM Peter Shoor 433 qbits quantum entalgement 1KB = 1024

Algorithm (ECDSA) for digital signature. The U.S. <u>National Security Agency</u> (NSA) allows their use for protecting information classified up to <u>top secret</u> with 384-bit keys.^[2] However, in August 2015, the NSA announced that it plans to replace Suite B with a new cipher suite due to concerns about quantum computing attacks on ECC.^[3]

https://en.wikipedia.org/wiki/SHA-2

SHA-2 (Secure Hash Algorithm 2) is a set of <u>cryptographic hash functions</u> designed by the United States <u>National Security Agency</u>(NSA).^[3] Cryptographic hash functions are mathematical operations run on digital data; by comparing the computed "hash" (the output from execution of the algorithm) to a known and expected hash value, a person can determine the data's integrity.

SHA-2 includes significant changes from its predecessor, <u>SHA-1</u>. The SHA-2 family consists of six hash functions with <u>digests</u> (hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.

SHA-160 2¹⁷⁶⁰=2⁸⁰ * 2⁷⁰

 2^{128} birthday $2^{256} = \sqrt{2^{5}12}$ 2^{112} secure against brute force attack